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1 Intersections of Lines with Fractals and Introduction to
Scenery Processes

1.1 Intersection of lines with fractals

We have iterated function systems in R2 with Φi(x) = rUx + ao fpr 1 ≤ i ≤ k, where
U is rotation by 2πξ for ξ ∈ R \ Q. We are assuming the SSC, so π : [k]N → K is a
conjugacy from σ → S, where K is the attractor of the system. We denote Ki = Φi[K]
and Kw = Φw[K] for words w.

If D ⊇ K, then Dw ⊇ Kw for all w Then K =
⋂
n≥1

⋃
w∈[k]n Dw.

Given z ∈ R2 and u ∈ S1, write Lz,u for the line through z parallel to u. We will prove
this result.

Theorem 1.1. Fix L ∈ R2. For a.e. u ∈ S1, there is a z ∈ K such that

dim(K ∩ Lz,u) ≥ dim(K ∩ L).

The machinery we develop will allow us to prove:

Theorem 1.2. dim(K ∩ L) ≤ max{0,dim(K)− 1} for all lines L.

Notation: Let P (X) be the set of probability measures on X. If Y ∈ BX , then P (Y ) ⊆
P (X). If X is a compact metric space and Y ∈ BX , then P (Y ) ∈ BP (X) for the weak*
topology.1

Definition 1.1. If µ ∈ P (P ), we say µ is carried by Y .

Definition 1.2. If µ ∈ P (X) and X is a compact metric space, let

W = {x ∈ X : µ(U) = 0 for some neighborhood U 3 x}.

Y := X \W is called the support of µ.

1This is an exercise in the monotone class theorem. Professor Austin says that he has never met someone
who enjoys the monotone class theorem, but this is actually false. I like the monotone class theorem!
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Then µ(Y ) = 1, and

Y = {x ∈ X : µ(Br(x)) > 0 ∀t > 0}.

If we have a “big” intersection of a line with K in some direction u, by pushing the
dynamics forward, we get “big” intersections in all directions ofr the form u0e

−2πimξ:

dim(K ∩ L) = max
i

dim(Ki ∩ L) = max
i

dim(S(Ki ∩ L)︸ ︷︷ ︸
=K∩Φ−1

i (L)

).

Hope: We want good intersections in a direction u ∈ S1. Maybe we can find lines
L(1), L(2), . . . with directions u1, u2, . . . ,∈ S1 such that un → u. Then L(ni) converges
to some limit line L in direction u. So dim(K ∩ L) = limi dim(K ∩ L(ui)). However, this
doesn’t work. Hausdorff dimension is incredibly discontinuous. We have to deal with this.2

1.2 Scenery dynamics with probability measures

Let α : K → [k], α[1;n] : K → [k]n, and αn : K → [k]. Denote [z]1 = {z′ : α1(z′) = α1(z)},
and [z]n1 = {z′ : α[1,n](z

′) = α[1,n](z)}. We want to define

T0(z, ν) = (Sz, S

(
ν(· ∩ [z])

ν([z]1)

)
).

This is defined only on U = {(z, ν) : ν([z]1) > 0}. So this is T0 : U → K ×P (K). We need
to restrict to X =

⋂
n≥1 T

−n
0 [U ] and let T = T0|X .

Definition 1.3. (X,T ) is the CP system.

We want to use Bogliubov-Krylov in this setting to product invariant distributions on
the space of probability measures on K × P (K).

Lemma 1.1. X = {(z, ν) : z ∈ supp(ν)}.

Proof. (z, ν) ∈ T−n0 [U ] ⇐⇒ ν([z]1) > 0 and S∗ν[z]1([Sz]1) = ν[z1]([z]2) > 0 and so on to
say ν([z]n1 ) > 0. This is equivalent to ν([z]1,2) > 0.

Notation: If ν(Kw) > 0, then νw = Sn∗ (ν|Kw).
These is a special subclass in P (L× P (K)).

Definition 1.4. If µ̂ ∈ P (K × P (K)) has second marginal µ, µ̂ is adapted if

µ̂ =

∫
P (K)

ν × δν dµ(ν).

2Analysis is the type of subject where you have to roll up your sleeves and walk into the jungle.
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In other words, choosing a random pair (z, ν) using µ̂ is the same as choosing ν ccording
to µ and then choosing z according to ν.

Lemma 1.2. If µ̂ is adapted, the µ̂(X) = 1.

Proof.

µ̂(X) =

∫
(ν × δν) ∗X( dµ(ν) =

∫
ν(supp(ν)) dµ(ν) = 1.

Let us rewrite the definition of boing adapted in the following way: µ̂ is adapted iff
f : K × P (K)→ R by∫

f(z, ν) dµ̂(z, ν) =

∫
P (K)

[∫
K
f(z, ν) dν(z)

]
︸ ︷︷ ︸

Qf(z,ν)

dµ(ν).

The function Qf(z, ν) does not actually depend on z, but we want to think of it as a
function on the same space.

Lemma 1.3. µ̂ is adapted if and only if∫
f dµ̂ =

∫
Qf dµ̂ ∀f ∈ C(K × P (K)).

Lemma 1.4. Q defines a bounded operator C(K × P (K))→ C(K × P (K)).

Proof. We need to show that if f is continuous, Qf is continuous. First, let f(z, ν) =
f1(z)f2(ν). Then Qf(z, ν) = (

∫
f1 dν) · f2(ν), so Q(fz, ν). By Stone-Weierstrass, a con-

tinuous function can be uniformly approximated by functions of the aforementioned form.
Now use ‖Qf‖u ≤ ‖f‖u.

Corollary 1.1. The set Pa of adapted distributions is a weak*-closed subset of P (K ×
P (K)).

Proof. Observe that

Pa =
⋂

P∈C(K×P (K))

{µ̂ :

∫
(f −Qf) dµ̂ = 0}.

This is an intersection of vanishing sets of continuous functions.

Remark 1.1. Pa is also convex.

Proposition 1.1. T∗ : Pa → Pa is continuous.

This follows form the following:
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Lemma 1.5. If µ̂ ∈ Pa, then T∗µ̂ ∈ Pa, and its second marginal is

Mµ =

∫ k∑
i=1

ν(Ki) · δνi dµ(ν).

We will prove the lemma next time.

Corollary 1.2. If µ̂(0) ∈ Pa and µ̂(n) := 1
n

∑n
i=1 T

i
∗µ̂

(0) and µ̂(ni) weak*−−−→ µ̂, then µ̂ ∈ Pa
and is T -invariant: T∗µ̂

(n) = µ̂(n) +O(1/n).
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